1. The prelude to the intelligent copywriting revolution: Why do you need an AI copywriting assistant?
In the era of digital marketing, content production efficiency has become the core competitiveness of enterprises. According to statistics, marketers need to write an average of 3.2 copywriting every day, and traditional artificial creation has three major pain points:
- Efficiency bottleneck: It takes an average of 47 minutes per article to create a creative concept;
- Mass fluctuations: Influenced by subjective factors of the creator, it is difficult to maintain a high-level output;
- High cost: The monthly salary of senior copywriters generally exceeds 15K, and the annual labor cost exceeds 200,000;
AI copywriter Assistant can:
- Improve copywriting generation efficiency by 800% (the average copy generation time of 200 words measured is <5 seconds)
- Maintain 92% accuracy of professional terms in multiple industries
- Reduce content production costs to 1/5 of traditional models
This article will teach you step by step to build an intelligent copywriting platform that supports e-commerce, finance, education and other industries. The technology stack uses Python (Transformers+Flask)+React.
2. Technical architecture selection: GPT-J+Flask+React gold combination
2.1 Model selection: Six advantages of GPT-J
characteristic | GPT-J Performance | Competitive product comparison |
---|---|---|
Parameter scale | 6 billion (GPT-J-6B) | It is 1/13 of GPT-3, lighter |
Chinese support | Built-in Chinese corpus pre-training | Better than BERT-class models |
Fine-tuning friendly | Supports LoRA low resource fine-tuning | Save 95% video memory than full-parameter micro-adjustment |
Generate quality | Chinese text confusion as low as 1.82 | Better than similar scale models |
Speed of reasoning | V100 graphics card up to 12t/s | 2 times that of GPT-3 |
Business-friendly | Apache 2.0 open source protocol | No copyright risk |
2.2 Architectural layered design
3. Core implementation steps: Start with model fine-tuning
3.1 Environmental Preparation (attached Dependency List)
# Create a virtual environment
python -m venv venv
source venv/bin/activate
# Install core dependencies
pip install transformers==4.32.0 accelerate==0.22.0 flask==3.0.0
pip install datasets==2.14.0 torch==2.0.1 redis==4.9.2
3.2 The entire process of model fine-tuning (taking e-commerce copywriting as an example)
3.2.1 Data preparation
from datasets import load_dataset
# Load custom dataset (requires preparation of CSV files in advance)
dataset = load_dataset("csv", data_files="ecommerce_copy.csv")
# Data format example:
# | product_name | keywords | copy_text |
# |--------------|-------------------|-------------------------|
# | Wireless headphones | Noise cancellation, sports, Bluetooth 5.3 | "Worry-free for sports! This headphone uses... |
# Define preprocessing functions
def preprocess(examples):
inputs = examples["keywords"]
targets = examples["copy_text"]
return {"input_text": inputs, "target_text": targets}
tokenized_datasets = (preprocess, batched=True)
3.2.2 Model loading and training configuration
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Traininger
# Load pretrained models and word participlers
model_name = "EleutherAI/gpt-j-6B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Configure training parameters
training_args = TrainingArguments(
output_dir="./gptj-finetuned",
per_device_train_batch_size=2,
num_train_epochs=3,
save_steps=500,
logging_steps=50,
fp16=True, # Enable mixed precision training
gradient_accumulation_steps=4,
)
# Custom trainer
class CopywriterTrainer(Trainer):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
= tokenizer
def train_dataset(self, tokenizer):
# Implement dynamic data loading logic
pass
# Initialize the trainer
trainer = CopywriterTrainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
tokenizer=tokenizer,
)
# Start fine adjustment
()
3.3 Model quantization and deployment optimization
# Use bitsandbytes for 4bit quantization
from transformers import AutoModelForCausalLM
import bitsandbytes as bnb
model = AutoModelForCausalLM.from_pretrained(
"EleutherAI/gpt-j-6B",
load_in_4bit=True,
device_map="auto",
torch_dtype=torch.float16,
)
# Enable GPU uninstallation (when the video memory is insufficient)
model = ("cuda", device_ids=[0,1]) # Multiple card parallelism
4. API service construction: Flask+Redis high-performance solution
4.1 Core API design
from flask import Flask, request, jsonify
import redis
from transformers import pipeline
app = Flask(__name__)
cache = (host='localhost', port=6379, db=0)
# Load the fine-tuned model
generator = pipeline(
"text-generation",
model="./gptj-finetuned",
tokenizer="./gptj-finetuned",
max_length=150,
temperature=0.7,
top_p=0.95
)
@('/generate', methods=['POST'])
def generate_copy():
data =
keywords = data['keywords']
industry = data['industry']
# cache key design
cache_key = f"{industry}_{'_'.join(keywords[:3])}"
# Check the cache first
cached = (cache_key)
if cached:
return jsonify({"copy": ()})
# Generate a document
prompt = f "Create copywriting for the {industry} industry, keyword: {','.join(keywords)}, requirements: professional, attractive, and call for action"
copy = generator(prompt, max_new_tokens=100)[0]['generated_text']
# Write to cache (valid for 1 hour)
(cache_key, 3600, copy)
return jsonify({"copy": copy})
if __name__ == '__main__':
(host='0.0.0.0', port=5000, debug=False)
4.2 Performance optimization strategy
- Request for current limit: Use Flask-Limiter to limit the number of requests per second;
- Batch reasoning: Merge multiple short requests for batch generation;
- Asynchronous processing: Use Celery to handle time-consuming tasks;
- Model sharding: Load different fine-tuning models according to industry.
5. Front-end development: React interactive interface design
5.1 Core Component Implementation
import React, { useState } from 'react';
import axios from 'axios';
function CopyGenerator() {
const [keywords, setKeywords] = useState('');
const [industry, setIndustry] = useState('E-commerce');
const [copy, setCopy] = useState('');
const [loading, setLoading] = useState(false);
const generateCopy = async () => {
setLoading(true);
try {
const response = await ('/api/generate', {
keywords: (','),
Industry
});
setCopy();
} catch (error) {
alert('Creation failed, please try again');
}
setLoading(false);
};
Return (
<div className="generator-container">
<select
value={industry}
onChange={(e) => setIndustry()}
className="industry-select"
>
<option value="E-commerce">E-commerce</option>
<option value="financial">financial</option>
<option value="Education">Education</option>
</select>
<textarea
placeholder="Enter keywords, separated by commas (example: noise-cancelling headphones, sports, Bluetooth 5.3)"
value={keywords}
onChange={(e) => setKeywords()}
className="keywords-input"
/>
<button
onClick={generateCopy}
disabled={loading}
className="generate-btn"
>
{loading ? 'Generating...' : 'Generating copy'}
</button>
<div className="copy-output">
<h3>Generate results:</h3>
<pre>{copy}</pre>
</div>
</div>
);
}
export default CopyGenerator;
5.2 Style design (CSS-in-JS solution)
const useStyles = makeStyles((theme) => ({
generatorContainer: {
maxWidth: '800px',
margin: '2rem auto',
padding: '2rem',
borderRadius: '12px',
boxShadow: '0 4px 6px rgba(0,0,0,0.1)',
backgroundColor: '#fff'
},
industrySelect: {
padding: '0.8rem',
borderRadius: '8px',
border: '2px solid #4CAF50',
marginBottom: '1rem',
width: '100%'
},
keywordsInput: {
width: '100%',
height: '120px',
padding: '1rem',
borderRadius: '8px',
border: '2px solid #2196F3',
marginBottom: '1rem',
resize: 'vertical'
},
generateBtn: {
backgroundColor: '#4CAF50',
color: '#fff',
padding: '1rem 2rem',
borderRadius: '8px',
border: 'none',
cursor: 'pointer',
width: '100%',
fontSize: '1.1rem',
transition: 'background-color 0.3s',
'&:hover': {
backgroundColor: '#45a049'
}
},
copyOutput: {
marginTop: '2rem',
padding: '1rem',
backgroundColor: '#f8f9fa',
borderRadius: '8px',
'& pre': {
whiteSpace: 'pre-wrap',
wordWrap: 'break-word',
lineHeight: '1.6'
}
}
}));
6. Advanced function: intelligent copywriting
6.1 BERT-based syntax optimization
from transformers import pipeline
# Load syntax check model
grammar_checker = pipeline("text2text-generation", model="prithivida/parrot_grammar_checker")
def poison_copy(raw_copy):
# Sentence processing
sentences = [() for s in (r'[.!?]', raw_copy) if ()]
polished = []
for sent in sentences:
# Syntax correction
corrected = grammar_checker(sent, max_length=150)[0]['generated_text']
# Style enhancement
enhanced = enhance_style(corrected)
(enhanced)
return '. '.join(polished)
6.2 Sentiment analysis enhancement
from transformers import pipeline
# Load sentiment analysis model
sentiment_analyzer = pipeline("sentiment-analysis", model="uer/bert-base-chinese-sentiment")
def enhance_style(text):
# Analyze emotional tendencies
result = sentiment_analyzer(text)[0]
score = result['score']
# Dynamic adjustment of wording
if score < 0.3:
return add_positive_words(text)
elif score > 0.7:
return add_professional_terms(text)
else:
return text
7. Deployment plan: from local to cloud
7.1 Local deployment (development environment)
# Start Redis
redis-server
# Start Flask backend (Gunicorn is recommended to use in production environment)
flask run --host=0.0.0.0 --port=5000
# Start React front-end
npm start
7.2 Cloud Native Deployment (AWS Solution)
- Model Service: Use SageMaker to deploy GPT-J endpoints;
- API Gateway: Expose the REST interface through API Gateway;
- Front-end hosting: S3+CloudFront static website hosting;
- database: RDS for MySQL storage industry template;
- Cache layer: ElastiCache Redis cluster.
8. Performance comparison and future prospects
index | Traditional solutions | AI Assistant | Improve multiple |
---|---|---|---|
Generation speed | 47 minutes/part | 5 seconds/part | 564x |
Cost/year | 200,000+ | 40,000 (including computing power) | 5x↓ |
Multi-industry support | Need to switch manually | Automatic adaptation | ∞ |
Quality stability | Large fluctuations | Maintain a high level | - |
Future scalable direction:
- Integrated multimodal generation (copywriting + picture);
- Add A/B testing function;
- Implement multilingual support;
- Develop mobile applications.
Conclusion: AI copywriting assistants not only liberate the hands of content producers, but also reshape the way marketing creativity is generated. Through the practice of this article, developers can quickly build an enterprise-level content middle platform, making AI the most powerful creative partner. It is recommended to start from the e-commerce industry and gradually expand to finance, education and other fields to witness the business magic of generative AI.